207 research outputs found

    Scalable genetic programming by gene-pool optimal mixing and input-space entropy-based building-block learning

    Get PDF
    The Gene-pool Optimal Mixing Evolutionary Algorithm (GOMEA) is a recently introduced model-based EA that has been shown to be capable of outperforming state-of-the-art alternative EAs in terms of scalability when solving discrete optimization problems. One of the key aspects of GOMEA's success is a variation operator that is designed to extensively exploit linkage models by effectively combining partial solutions. Here, we bring the strengths of GOMEA to Genetic Programming (GP), introducing GP-GOMEA. Under the hypothesis of having little problem-specific knowledge, and in an effort to design easy-to-use EAs, GP-GOMEA requires no parameter specification. On a set of well-known benchmark problems we find that GP-GOMEA outperforms standard GP while being on par with more recently introduced, state-of-the-art EAs. We furthermore introduce Input-space Entropy-based Building-block Learning (IEBL), a novel approach to identifying and encapsulating relevant building blocks (subroutines) into new terminals and functions. On problems with an inherent degree of modularity, IEBL can contribute to compact solution representations, providing a large potential for knock-on effects in performance. On the difficult, but highly modular Even Parity problem, GP-GOMEA+IEBL obtains excellent scalability, solving the 14-bit instance in less than 1 hour

    Shrink-Perturb Improves Architecture Mixing during Population Based Training for Neural Architecture Search

    Full text link
    In this work, we show that simultaneously training and mixing neural networks is a promising way to conduct Neural Architecture Search (NAS). For hyperparameter optimization, reusing the partially trained weights allows for efficient search, as was previously demonstrated by the Population Based Training (PBT) algorithm. We propose PBT-NAS, an adaptation of PBT to NAS where architectures are improved during training by replacing poorly-performing networks in a population with the result of mixing well-performing ones and inheriting the weights using the shrink-perturb technique. After PBT-NAS terminates, the created networks can be directly used without retraining. PBT-NAS is highly parallelizable and effective: on challenging tasks (image generation and reinforcement learning) PBT-NAS achieves superior performance compared to baselines (random search and mutation-based PBT).Comment: 10 pages, 7 figures. Accepted at ECAI 202

    Multi-Objective Population Based Training

    Full text link
    Population Based Training (PBT) is an efficient hyperparameter optimization algorithm. PBT is a single-objective algorithm, but many real-world hyperparameter optimization problems involve two or more conflicting objectives. In this work, we therefore introduce a multi-objective version of PBT, MO-PBT. Our experiments on diverse multi-objective hyperparameter optimization problems (Precision/Recall, Accuracy/Fairness, Accuracy/Adversarial Robustness) show that MO-PBT outperforms random search, single-objective PBT, and the state-of-the-art multi-objective hyperparameter optimization algorithm MO-ASHA

    The Impact of Asynchrony on Parallel Model-Based EAs

    Get PDF
    In a parallel EA one can strictly adhere to the generational clock, and wait for all evaluations in a generation to be done. However, this idle time limits the throughput of the algorithm and wastes computational resources. Alternatively, an EA can be made asynchronous parallel. However, EAs using classic recombination and selection operators (GAs) are known to suffer from an evaluation time bias, which also influences the performance of the approach. Model-Based Evolutionary Algorithms (MBEAs) are more scalable than classic GAs by virtue of capturing the structure of a problem in a model. If this model is learned through linkage learning based on the population, the learned model may also capture biases. Thus, if an asynchronous parallel MBEA is also affected by an evaluation time bias, this could result in learned models to be less suited to solving the problem, reducing performance. Therefore, in this work, we study the impact and presence of evaluation time biases on MBEAs in an asynchronous parallelization setting, and compare this to the biases in GAs. We find that a modern MBEA, GOMEA, is unaffected by evaluation time biases, while the more classical MBEA, ECGA, is affected, much like GAs are.Comment: 9 pages, 3 figures, 3 tables, submitted to GECCO 202

    Less is More: A Call to Focus on Simpler Models in Genetic Programming for Interpretable Machine Learning

    Get PDF
    Interpretability can be critical for the safe and responsible use of machine learning models in high-stakes applications. So far, evolutionary computation (EC), in particular in the form of genetic programming (GP), represents a key enabler for the discovery of interpretable machine learning (IML) models. In this short paper, we argue that research in GP for IML needs to focus on searching in the space of low-complexity models, by investigating new kinds of search strategies and recombination methods. Moreover, based on our experience of bringing research into clinical practice, we believe that research should strive to design better ways of modeling and pursuing interpretability, for the obtained solutions to ultimately be most useful

    Observer variation-aware medical image segmentation by combining deep learning and surrogate-assisted genetic algorithms

    Full text link
    There has recently been great progress in automatic segmentation of medical images with deep learning algorithms. In most works observer variation is acknowledged to be a problem as it makes training data heterogeneous but so far no attempts have been made to explicitly capture this variation. Here, we propose an approach capable of mimicking different styles of segmentation, which potentially can improve quality and clinical acceptance of automatic segmentation methods. In this work, instead of training one neural network on all available data, we train several neural networks on subgroups of data belonging to different segmentation variations separately. Because a priori it may be unclear what styles of segmentation exist in the data and because different styles do not necessarily map one-on-one to different observers, the subgroups should be automatically determined. We achieve this by searching for the best data partition with a genetic algorithm. Therefore, each network can learn a specific style of segmentation from grouped training data. We provide proof of principle results for open-sourced prostate segmentation MRI data with simulated observer variations. Our approach provides an improvement of up to 23% (depending on simulated variations) in terms of Dice and surface Dice coefficients compared to one network trained on all data.Comment: 11 pages, 5 figures, SPIE Medical Imaging Conference - 202

    An End-to-end Deep Learning Approach for Landmark Detection and Matching in Medical Images

    Get PDF
    Anatomical landmark correspondences in medical images can provide additional guidance information for the alignment of two images, which, in turn, is crucial for many medical applications. However, manual landmark annotation is labor-intensive. Therefore, we propose an end-to-end deep learning approach to automatically detect landmark correspondences in pairs of two-dimensional (2D) images. Our approach consists of a Siamese neural network, which is trained to identify salient locations in images as landmarks and predict matching probabilities for landmark pairs from two different images. We trained our approach on 2D transverse slices from 168 lower abdominal Computed Tomography (CT) scans. We tested the approach on 22,206 pairs of 2D slices with varying levels of intensity, affine, and elastic transformations. The proposed approach finds an average of 639, 466, and 370 landmark matches per image pair for intensity, affine, and elastic transformations, respectively, with spatial matching errors of at most 1 mm. Further, more than 99% of the landmark pairs are within a spatial matching error of 2 mm, 4 mm, and 8 mm for image pairs with intensity, affine, and elastic transformations, respectively. To investigate the utility of our developed approach in a clinical setting, we also tested our approach on pairs of transverse slices selected from follow-up CT scans of three patients. Visual inspection of the results revealed landmark matches in both bony anatomical regions as well as in soft tissues lacking prominent intensity gradients.Comment: SPIE Medical Imaging Conference - 202

    Bi-objective optimization of organ properties for the simulation of intracavitary brachytherapy applicator placement in cervical cancer

    Full text link
    Validation of deformable image registration techniques is extremely important, but hard, especially when complex deformations or content mismatch are involved. These complex deformations and content mismatch, for example, occur after the placement of an applicator for brachytherapy for cervical cancer. Virtual phantoms could enable the creation of validation data sets with ground truth deformations that simulate the large deformations that occur between image acquisitions. However, the quality of the multi-organ Finite Element Method (FEM)-based simulations is dependent on the patient-specific external forces and mechanical properties assigned to the organs. A common approach to calibrate these simulation parameters is through optimization, finding the parameter settings that optimize the match between the outcome of the simulation and reality. When considering inherently simplified organ models, we hypothesize that the optimal deformations of one organ cannot be achieved with a single parameter setting without compromising the optimality of the deformation of the surrounding organs. This means that there will be a trade-off between the optimal deformations of adjacent organs, such as the vagina-uterus and bladder. This work therefore proposes and evaluates a multi-objective optimization approach where the trade-off between organ deformations can be assessed after optimization. We showcase what the extent of the trade-off looks like when bi-objectively optimizing the patient-specific mechanical properties and external forces of the vagina-uterus and bladder for FEM-based simulations
    • …
    corecore